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Abstract: In this manuscript, we describe the soft- and hardware architecture as well as the implemen-
tation of a modern Internet of Medical Things (IoMT) system for sensor-assisted telepsychotherapy.
It enables telepsychotherapy sessions in which the patient exercises therapy-relevant behaviors in
their home environment under the remote supervision of the therapist. Wearable sensor information
(electrocardiogram (ECG), movement sensors, and eye tracking) is streamed in real time to the
therapist to deliver objective information about specific behavior-triggering situations and the stress
level of the patients. We describe the IT infrastructure of the system which uses open standards
such as WebRTC and OpenID Connect (OIDC). We also describe the system’s security concept, its
container-based deployment, and demonstrate performance analyses. The system is used in the
ongoing study SSTeP-KiZ (smart sensor technology in telepsychotherapy for children and adolescents
with obsessive-compulsive disorder) and shows sufficient technical performance.

Keywords: sensor networks; internet of medical things; healthcare monitoring; OCD; telepsychother-
apy; WebRTC; security; open standards; performance evaluation

1. Introduction

Telepsychotherapy is an innovative method which has been shown to be effective in
treating psychological disorders, i.e., patients and therapists hold psychotherapy sessions
via online video conferences. A recent meta-analysis indicates that telepsychotherapy
is as effective as in-person psychotherapy [1]. Meanwhile, telepsychotherapy is well
accepted by therapists [2] and patients [3]. Especially due to the COVID-19 pandemic,
telepsychotherapy was even described as the new normal [4] since in-person therapy
sessions were not possible during that time.

In addition to the possibility for remote therapeutic conversations, telepsychotherapy
also opens up new treatment strategies. For patients with obsessive-compulsive disorder
(OCD) [5] which is especially impairing for children and adolescents [6], it is a promising
form of therapy because the patient is thereby in his or her home environment, where a large
number of the compulsion-triggering situations occur. Studies have shown that behavioral
therapies are much more effective and sustainable in the patient’s home environment,
where the compulsion-triggering situations occur in daily life, than in artificial clinical
therapy situations.

In the SSTeP-KiZ study (smart sensor technology in telepsychotherapy for children
and adolescents with OCD), we combine video therapy with wearable sensors to deliver
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exposure (E) and response prevention (RP) [7] therapy aimed at confronting obsessive-
compulsive stimuli at home without performing obsessive-compulsive acts. During E/RP
sessions, patients are explicitly exposed to their obsessions while asked to refrain from their
usual response and to instead endure the discomfort caused by anxiety or disgust until it
subsides on its own.

Within such therapy sessions, wearable sensor technology with eye tracking, electro-
cardiogram (ECG), and motion sensing allows the therapist to get a better view on the
patient’s actions, to gain objective information about the compulsive behavior triggering
situations and the patient’s current stress level. This information is very valuable to the
therapist for objective therapy evaluation as well as for adjusting the exposure levels during
the therapy session. For the realization of such a sensor-assisted telepsychotherapy system,
a dedicated hard- and software architecture described in Figure 1 is needed, which realizes
the following main tasks.

• The synchronous recording of multiple wearable sensors at patient’s home, namely
ECG, eye tracking, ego-centric video, and movement sensors.

• Real-time online streaming and processing of sensor data with an insightful visualiza-
tion for the therapist.

• Questionnaire features to measure the therapy progress with gamification features for
an intrinsic motivation of filling them out.

• A secure implementation of data storing and streaming.

Patient TherapistSensors

Aggregator
Device

Therapist
Portal

ECG

Eye Tracking

Movement

Cloud
Storage

Phone

Figure 1. Overview of the SSTeP-KiZ system’s (SKS) infrastructure.

In this manuscript, we describe the soft- and hardware architecture of the SSTeP-KiZ
System (SKS) as a modern Internet of Medical Things (IoMT) system. Classic video-
telephony is still used in this architecture, but we will not go into its state-of-the-art
implementation. The architecture is also checked by the IT security department on medical
IT security standards, the data protection department on EU-GDPR compliance, and an
ethics commission on ethical aspects. It is actively used in an ongoing feasibility study and
our measurements also indicate good performance, but the streaming stability should be
improved further.

We start this manuscript with an architecture description, continue with a performance
evaluation and some legal aspects about the operation of the infrastructure, and finish with
a discussion about the current state. Since this is an interdisciplinary topic, we provide
additional information about used technologies in the Appendix to keep this document
self-contained and comprehensible even for technical interested but inexperienced readers.
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2. Architecture

This section describes the architecture of the SSTeP-KiZ System (SKS) with its solu-
tions for

• The transport architecture for the real-time streaming and the recording of the sensor
data including the used sensors and how they transfer their data.

• The Questionnaire architecture where therapists can create questionnaires, send them
to the patients and retrieve their responses including gamification elements to motivate
the patients.

• The administration and security architecture where administrators can manage the
overall system from one place.

We utilize the Vidyo Connect [8] software for the video telephony, which has been
used successfully in previous telepsychotherapy studies [7].

2.1. Sensor Transport Overview

A general overview of the sensor transport architecture is depicted in Figure 2. It is
divided into two pipelines: the Recording Pipeline which stores the sensor data for later
access by researchers and therapists, and the Streaming Pipeline which streams the sensor
data to the therapist in real time during the telepsychotherapy session.

Streaming
Server

Storage
Server

Therapist Portal

Data Portal

Sensors Aggregator Device

Recording Pipeline

Streaming Pipeline

Figure 2. Overview of the sensor transport architecture.

Each pipeline starts at the sensors of the patient which measure the data and transfer
them to the patient’s Aggregator Device. The Aggregator Device processes the data to a
desired data format. In case of the Recording Pipeline, the data are cached on the Aggregator
Device before they are uploaded to the Storage Server to be accessed by therapists and
researchers in the Data Portal. In case of the Streaming Pipeline, the Aggregator Device
utilizes the Streaming Server to forward the data to the Therapist Portal in real time to view
them to the therapist during the telepsychotherapy session. The Streaming Server thereby
consists of three components which will be introduced in Section 2.4.2.

In the following, we describe the Aggregator Device which is the central component
of the transport architecture. Then we continue with a description of the sensors which are
used in the SSTeP-KiZ System. Finally, we describe the Streaming and Recording Pipeline.

2.2. Aggregator

The Aggregator Device is the central component of the transport architecture. It
controls the sensors, receives their data, processes the data and forwards them for streaming
or recording.

2.2.1. Overview

As depicted in Figure 3, the Aggregator Software is running on the Aggregator Device
and is divided into the Aggregator Frontend and the Aggregator Backend. The Aggregator
Frontend is a web-based user interface to control the sensors. The Aggregator Backend
is a console application which cares about the sensor connectivity and performs the data
processing. They are connected to each other via WebRTC, a Real-Time Peer-to-Peer
streaming technology for web browsers which is further described in Appendix A.5.4.
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Aggregator Device

Aggregator 
Software

Aggregator 
Backend

Aggregator 
Frontend

Sensors

Recording 
Pipeline

Streaming 
Pipeline

Figure 3. Overview of the Aggregator Device.

2.2.2. Hardware

As Aggregator Device, we use Microsoft’s Surface Pro 7 with an Intel Core i7-1065G7
processor, 16 GB of LPDDR4X memory, a 256 GB PCIe SSD, Wi-Fi 6 and Bluetooth 5.0
with Windows 11 Pro in version 21H2 (Build 22000.778). The advantage of such a tablet
computer is that it can be easily carried in a backpack, has a strong computing power, and
can be operated by touch input. To protect the device and the stored health data on it from
unauthorized access, we have taken the following measures:

• We enable BitLocker to encrypt the whole internal storage and verify the OS integrity
to prevent booting an eventually manipulated OS.

• We lock the boot order to prevent booting another OS than the Windows installation.
• We restricted the UEFI firmware to boot only operating systems signed by Microsoft.
• We protect access to the UEFI firmware with a strong individual password to prevent

unauthorized changes of the boot configuration.
• To prevent unauthorized logins, the tablets have only two Windows accounts: an

Administrator account and a non-administrator patient account.
• The passwords of both accounts are strong (20 characters consisting of uppercase,

lowercase, special letters, and digits) and individual for each device and patient.
• For a better user experience, patients can log in to their accounts with a 6-digit PIN or

via Windows Hello face recognition.
• We prevent brute-force attacks with the following measures: if the PIN was entered

wrong ten times, patients must use their password. After ten failed password tries,
the device is locked for 30 minutes.

• Patients are forced to use the tablet only at home to add a kind of physical access
control layer.

• Before a tablet is handed over to another patient, we format its disk entirely, clear
the TPM’s key storage and reinstall the device with new UEFI and Administrator
passwords.

So, the medical health data which are stored on the tablet of a patient are physically
protected since an attacker should not be able to enter the patient’s house, and protected
by hardened access control mechanisms of the Windows OS. Hence, only our certified
Administrators or the patient are able to access the data on the tablet computer.

2.2.3. Backend

The Aggregator Backend Software is a Node.js [9] application which uses the Nest.js [10]
framework and runs as a console application on the Aggregator Device. Its main purpose is
to receive data of the sensors and process them for streaming or recording. Its architecture
is depicted in Figure 4.
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Figure 4. Architecture of the Aggregator Backend.

The Backend follows a modular “driver”-based infrastructure to connect its sensors.
Just like drivers for operating systems, these drivers are software modules which support
specific sensor hardware implementations. In our published code, we provide such driver
implementations for the sensors described in Section 2.3. These are drivers for one electro-
cardiograph sensor (ECG driver), one eye tracking sensor (ETK driver) and two different
movement sensors (MOV driver). They are depicted on the left of the Aggregator Backend
in Figure 4. The drivers receive data from the sensors, process them to an object-oriented
representation, and emit them as events to the Aggregation Module. The Aggregation
module listens to these events and does the following:

• If recording is on, it forwards the data to the Recording Module. The Recording
Module stores the data on the internal storage of the Aggregator Device where the
data continue their way through the Recording Pipeline.

• If there is an active streaming connection to a therapist, it forwards the data to the
Streaming Module. The Streaming Module awaits incoming streaming connection
requests from therapists via a WebSocket connection which is implemented with the
Socket.IO [11] library. From there, the data continue their way through the Streaming
Pipeline.

2.2.4. Frontend

The Aggregator Frontend is a web application developed with the single-page appli-
cation framework Angular [12] and acts as a user interface for the Aggregator Backend to
control the sensors and view their state as depicted in Figure 5. The Aggregator Backend
hosts the Aggregator Frontend locally and the patient runs it in the Chromium-based web
browser Microsoft Edge.

To control the devices and update their state, each driver has its own tile in the user
interface as depicted in Figure 5. With the buttons on the bottom of the tiles, the patient
connects or disconnects the sensors, starts or stops their calibration, and starts or stops the
recording. The visibility of these buttons depends on the capabilities of the sensors. The
icons on the top right corner of the tile show the recording state (circle), streaming state
(waves), calibration state (dot with wave on top), and connection state (link symbol). Again,
the visibility of these icons depends on the capabilities of the sensors. The refresh button
on the top right of the tile restarts the sensor driver in case of a failure.

To transfer the states from the Backend to the Frontend and to notify the Backend about
interactions on the Frontend, the Aggregator Software uses a WebRTC connection. In the
Frontend, each tile is connected to a dedicated controller which holds the sensor state. These
controllers in the Frontend each have their own Data Channel in the WebRTC connection
to the related drivers in the Backend. This communication is depicted in Figure 6.
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Figure 5. Aggregator Frontend with control tiles for each sensor driver.

MOV Driver

ETK Driver

ECG Driver

Aggregator BackendAggregator Frontend

ECG
ControllerECG Tile

ETK
Controller

MOV
Controller

ETK Tile

MOV Tile

Figure 6. Frontend-to-Backend communication within the Aggregator Device.

To improve the precision of the eye tracker’s gaze estimation, the patient must calibrate
the eye tracker. This requires the patient to see the eye tracker’s video stream. Therefore,
the Aggregator Backend streams the eye tracker’s video stream to the Frontend which
displays the video in the eye tracking tile. This is implemented with an additional WebRTC
Media Stream between the Backend and the Frontend, which is depicted in Figure 6 as the
blue arrow.

2.3. Sensors

This section describes the purpose and technical specifications of the used sensors
which are shown in Figure 7. The section also describes how the sensors transfer data to
the Aggregator.

Table 1 provides an overview of the technical specifications. The used configurations
are described in the following related subsections. An overview of the pipelines which
describe how the data are transferred from the specific sensors to the Aggregator Device
are described in Figure 8.
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(a) (b)

(c) (d)
Figure 7. Illustrations of all sensors applied in SKS. (a) Movesense ECG and movement sensor with
breast belt. (b) One of two APDM Opal Movement Sensors on the left hand. (c) The 3D printed Look!
eye tracker. (d) All sensors at a patient.

Table 1. Overview of sensor specifications.

Sensor Type Sample Rate Resolution Connectivity

ey
e

tr
ac

ke
r Left Eye

video

30 Hz 640 × 480 b/w

USB 2.0Right Eye 30 Hz 640 × 480 b/w

Field 30 Hz 640 × 480 color

A
PD

M
O

pa
l Acceleration 3-axes 20–128 Hz ±16 g–±200 g

Proprietary 2.4 GHz and USB 2.0Angular Velocity 20–128 Hz ±2000 deg/s

Magnetic Field 20–128 Hz ±8 Gauss

M
ov

es
en

se
H

R
2 ECG 1-channel 125–512 Hz

Bluetooth 4.0/5.0
Acceleration

3-axes

12.5–208 Hz ±2 g–±16 g

Angular Velocity 12.5–208 Hz ±2000 deg/s

Magentic Field 12.5–208 Hz ±49 gauss
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Aggregator Device

Aggregator
Backend

Aggregator
Frontend

WebRTC

Movesense HR2 Bluetooth Low Energy

ECG Characteristic

Movement Characteristic

(a)

Aggregator DeviceAPDM Opals APDM Docking Station

Nextcloud 
Sync Client

APDM
Connector

USB USB

FS

(b)

Aggregator DeviceAPDM Opals APDM Access Point

Aggregator
Backend

APDM
Connector

Wireless USB

UDP

(c)

Aggregator Device

Aggregator
Backend

Look!
WebRTC

Eye Tracker USB

(d)

Figure 8. Overview of sensor Streaming and Recording Pipelines. (a) Movesense movement and
ECG Streaming and Recording Pipeline. (b) APDM sensor Recording Pipeline. (c) APDM sensor
Streaming Pipeline. (d) Eye Tracking Streaming and Recording Pipeline.

2.3.1. Movesense HR Sensor—Utilization

We apply the Movesense Sensor HR2 with a chest strap as shown in Figure 7a at the
torso of the patient to track the following metrics:

• The acceleration with a 3-axis accelerometer configured with a sampling rate of 52 Hz.
• The angular velocity with a 3-axis gyroscope configured with a sampling rate of

52 Hz.
• The magnetic field with a 3-axis magnetometer configured with a sampling rate of

52 Hz.
• The heart’s electrical activity with a single channel ECG configured with a sampling

rate of 250 Hz.

The movement samples will measure the upper body’s movement in relation to the
wrist movements which are measured by the APDM movement sensors as described in
Section 2.3.3. This helps us to distinguish, e.g., jumps where the whole body moves from
pokes where only the hands move. The movement measurement in general is relevant to
quantify whether changes in the HRV come only from the patient’s stress level or whether
it is also caused by physical activity. This is explained further in Section 2.3.2.

The resulting graphical plot of the measured electrical activity in volt on the y-axis and
the time on the x-axis are called electrocardiogram (ECG). According to Kwon et al. [13],
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the sampling rate should be at least 100 Hz to achieve a moderate data quality, so 250 Hz
are a pretty good resolution. A characteristic example of such an ECG voltage series graph
is depicted in Figure 9.

t

Voltage

RR-Interval

Figure 9. Characteristic ECG voltage curve with an RR interval in red.

The R spike is the one with the largest altitude of an interval. It indicates a heart beat.
Our software detects these R peaks from the ECG samples. The time distance between two
R waves in milliseconds is called the RR-interval. Our software derives the current heart
rate (HR) from the RR interval with Equation (1) in beats per minute (bpm):

HR [in bpm] =
60000 ms

min
RR [in ms]

. (1)

From a sequence of these RR intervals, the software computes the heart rate variability
(HRV). The HRV supports the therapist during a therapy session by indicating the patient’s
stress level since the HRV highly correlates with the patient’s stress level as follows [14]:

• High HRV: patient is relaxed.
• Low HRV: patient is stressed.

This is because under stressed conditions the heart is forced to provide a constant
oxygen and blood supply for the body while under relaxed conditions the heart is more
flexible.

However, the HRV will also decrease when the body is doing physical activities
without being stressed. To prevent such distortions of the stress level’s reliability, we expect
to be able to compensate for these distortions by movement measurements as explained in
Section 2.3.3.

2.3.2. Movesense HR Sensor—Implementation

All the evaluations described in Section 2.3.1 happen on the Aggregator Device, but
the raw ECG voltage values are measured on the sensor and transferred to the Aggregator
Device. Since the sensor has no sufficient internal storage, we can only transfer the voltage
and movement data via Bluetooth Low Energy (BLE) to the Aggregator Device shortly
after their measurement as depicted in Figure 8a. When interference occurs during the BLE
transmission, the data will be lost.

BLE provides a standardized interface to exchange information between two devices
called the GAP protocol which is described in Appendix A.1. In GAP, standardized
GATT services and characteristics encapsulate the communication interface for, e.g., Heart
Rate measurements. Due to missing standardized GATT services and characteristics for
movement and ECG data, Movesense has implemented a Bluetooth Classic API to access
these data. Since this API transfers the data as JSON-encoded strings, it is not possible to
transfer both the ECG and movement data at our preferred sampling rate with Bluetooth’s
limited 1 Mbps bandwidth. So we developed a custom firmware for the sensor to provide
access to these data at the preferred sampling rate via BLE. Therefore, we defined a custom
GATT service with the 16 bit UUID 0x1859 with the following custom GATT characteristics:
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• The ECG characteristic with the 16 bit UUID 0x2BDD which contains a set of n = 16
measurements, encoded with values concatenated in the following order and as
depicted in Figure 10:

1. The relative timestamp tn−1 as a 32 bit unsigned integer. It indicates how many
milliseconds the last sample in the array was measured after startup of the sensor.

2. The array of voltage samples with n times a 16 bit signed integer. They encode
a sequence of ECG voltages in millivolts (mV).

time 
uint32

value 2 
int16

value n−1 
int16characteristic: value 0 

int16
value 1 
int16

Figure 10. Encoding of ECG characteristics.

• The movement characteristic with the 16 bit UUID 0x2BE2 which contains a set of
n = 8 measurements, encoded with values concatenated in the following order and as
depicted in Figure 11:

1. The relative timestamp tn−1 as a 32 bit unsigned integer. It indicates how many
milliseconds the last sample was measured after startup of the sensor.

2. The array of movement samples with n times movement samples containing
values in the following order:

(a) The acceleration to the x, y, and z direction concatenated as 16 bit integer
values in centimeter per seconds squared (cm/s2).

(b) The angular velocity around the x, y, and z axis concatenated as 16 bit
integer values in decidegree per second (d◦/s).

(c) The magnetic field to the x, y, and z axis concatenated as 16 bit integer
values in centigauss (cgauss).

time 
uint32

value 0 
sample

value n−1 
sample

accleleration 
vector3

angular velocity 
vector3

magnetic field
vector3

x
int16

y
int16

z
int16

sample: (3x zoom)

characteristic:

vector3: (9x zoom)

Figure 11. Encoding of movement characteristics.

To compute relative timestamps ti for the sample i from the relative timestamp tn−1,
we use the sampling rate f (in Hz = s−1) and Equation (2).

ti = tn +
i− n + 1

f
(2)

As derived from the enumeration of the sensor’s metrics, we insert the ECG sampling
frequency fecg = 250 and ECG sample length necg = 16, or the Movement sampling
frequency fmov = 52 and the movement sampling length nmov = 8.

To compute absolute timestamps t′i from these relative timestamps ti, the offset of the
sensor startup time tδ to the current unix epoch time tunix is estimated with Equation (3)
when the timestamp tn−1 is received. Thereby, tε is the transfer delay caused by the
transmission, by buffers, and processing on the sensor and the receiving device. Based on
experience values tε is less than 1 millisecond and can be assumed as tε = 0.

tδ = tunix − tn−1 − tε (3)
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As depicted in Figure 8a, the receiving, parsing, and timestamping is implemented to
the Aggregator Frontend in JavaScript. To connect to the sensor via BLE, we used the Web
Bluetooth API whose specification is currently in development at the W3C [15].

For Recording purposes, the Aggregator Frontend sends the movement values and
the ECG voltages via a dedicated WebRTC Data Channel to the Aggregator Backend. The
Aggregator Backend stores the movement samples together with absolute unix timestamps
to one CSV file, and the ECG samples together with absolute unix timestamps to another
CSV file.

For streaming purposes, the Aggregator Frontend runs a real-time R peak detection.
The time offset of two successive R peaks is the RR interval. From a sequence of RR-
intervals, the Aggregator Frontend derives the heart rate variability (HRV) with various
standardized approaches like SDNN or RMSSD which will not be discussed further in
this paper. The Aggregator Frontend transfers these HR and HRV values via a Data
Channel to the Aggregator Backend from where they get via the Streaming Pipeline to the
Therapist Portal.

2.3.3. APDM Movement Sensors—Utilization

We use one Opal movement sensor by APDM Inc., Portland, OR, USA [16] at each
wrist of the patient as shown in Figure 7b to track the following metrics:

• The acceleration with a 3-axis accelerometer at a sampling rate of 128 Hz.
• The angular velocity with a 3-axis gyroscope at a sampling rate of 128 Hz.
• The magnetic field with a 3-axis magnetometer at a sampling rate of 128 Hz.

We use them to track the patient’s physical activity, and to quantify the intensity of
the compulsive disorders.

With the APDM movement sensors at the wrists, we can derive the absolute movement en-
ergy of the patient’s hand movements. Combined with the movement data from the Movesense
sensor at the torso, we can derive the relative movements of the patient’s hands to the patient’s
body. This lets us distinguish between, e.g., a jump where the whole body moves which is a
stronger physical activity, and a hand raise where only the hands move up and down which is
a weaker physical. With the data measured with the SKS, Thierfelder et al. [17] were able to
find correlations which improve the reliability of the computed stress level.

The relative hand movements to the torso may also allow a quantification of the intensity
of the compulsive disorders, e.g., many patients relieve stress by washing their hands or other
compulsive actions. Using the magnitude acceleration vector, one can derive the washing
intensity from the acceleration forces. In previous work, these sensors have been used to
identify specific disease-related movement characteristics in patients daily life for neurological
movement disorders like cerebellar ataxia Ilg et al. [18] and Thierfelder et al. [19].

2.3.4. APDM Movement Sensors—Implementation

For a reliable recording, the APDM Opal sensors store the values on their internal
8 GB flash storage which lasts for about 450 hours. To access the recorded raw files, the
patient puts the Opal sensors into a USB docking station and connects the docking station
via USB to the Aggregator Device as depicted in Figure 8b. As part of the MOV Driver
in the Aggregator Backend, we developed a Java application called the APDM Connector
Software. This application detects connected APDM Opal sensors, copies new raw data
files and converts them to the Hierarchical Data Format v5 (HDF5) which can be used for
our evaluations. For the conversion, the application uses the APDM Java SDK since the raw
files are a proprietary format of APDM Inc. The converted files are stored on the Aggregator
Device’s internal file system from where they continue with the Recording Pipeline.

As soon as we have achieved a reliable stress level estimation, or a reliable compulsive
action quantification, we also require real-time access to the movement data to compute the
stress level and send it to the therapists. So we prepared the infrastructure to stream the
movement data in real time as depicted in Figure 8c. The Opal sensors allow a real-time
streaming of their data via a proprietary 2.4 GHz wireless protocol by APDM Inc. The
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APDM Access Point synchronizes these data and makes them available to the Aggregator
Device via USB. Using the APDM Java SDK, the APDM Connector Software accesses these
data and streams them as UTF-8 encoded JSON strings to a UDP (see Appendix A.2.1)
endpoint of the MOV Driver in the Aggregator Backend. From there on, the data continue
their way through the Streaming Pipeline.

2.3.5. Look! Eye Tracker—Utilization

The eye tracker consists of a field camera placed at the forehead and two eye cameras
directed to the patient’s eyes. The field camera allows the therapist to see what the patient
sees and the eye cameras detect the patient’s pupils to estimate the patient’s gaze direction.

This is especially relevant in the context of the telepsychotherapy session when the
therapist puts the patient into an exposure exercise. Since the therapist can check where
the patient is looking, the patient cannot avoid looking at stress-inducing situation during
the exercise.

2.3.6. Look! Eye Tracker—Implementation

Since available eye trackers are too large for a children’s head, we 3D-printed an eye
tracker as shown in Figure 7c with the following camera properties:

• Two infrared eye cameras with 30 frames per second and a resolution of 320 by
240 pixels.

• One field camera with 30 frames per second and a resolution of 640 by 480 pixels.

The eye tracker connects all three cameras via an integrated USB hub with one USB-A
cable to the Aggregator Device. For the gaze estimation, we use the Look! eye tracking
software as described by Kübler et al. [20]. Therefore, Look! first synchronizes the frames of
the three cameras with each other. An example of the three sticked together camera images
is depicted in Figure 12. It shows the eye camera images with detected pupils on the right
and the field camera with the gaze direction on the left. Then it uses a convolutional neural
network (CNN) to extract features like the gaze vector from the pupil positions on the
eye camera images. With this gaze vector and parameters from a calibration, the software
computes the gaze coordinates which indicate the gaze direction on the field camera.

Figure 12. Screenshot of eye tracking calibration. Green labels are displayed by the eye tracking
software to the therapist, rectangular red labels are inserted to mark concepts described in the text.

The Look! software is connected to the ETK driver via WebRTC as depicted in
Figure 8d. This connection has one Data Channel to start and stop the calibration and
recording, and a Media Stream to receive one video stream which contains the field and the
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eye camera streams as one. This video stream also renders the gaze estimation as a green
circle into the field camera.

For recording purposes, Look! stores this clipped video stream of all three cameras
but without the highlighted gaze estimation into one MP4 video file at a resolution of
960 by 480 pixels. Such a sticked-together image is provided in Figure 12. In addition, it
stores a TSV file which contains the gaze estimation, timestamps, and other information for
debugging. These stored files then continue with the Recording Pipeline. For streaming
purposes, the ETK driver simply forwards the video stream with its highlighting from the
Look! software to the Streaming Pipeline.

2.3.7. Look! Eye Tracker—Calibration

As described by Kübler et al. [20], the Look! eye tracker computes the gaze estimation
with parameters modelling the relation of the detected pupils from the eye cameras and the
corresponding two-dimensional position on the field camera. To gain these parameters, it
is necessary to calibrate the eye tracker first. Since the accuracy depends on the positioning
of the eye tracker on the patient’s face, the patient should calibrate the eye tracker every
time he/she puts the eye tracker on.

To calibrate the eye tracker, the patient starts the calibration procedure by clicking
on the calibrate button in the Aggregator UI. Then the patient uses a tracker which looks
similar to a QR code, focuses with his/her eyes on the tracker, and moves the tracker
around the field of view. The eye tracking software detects this tracker pattern on the field
camera of the eye tracker and the eye’s pupil position on the eye cameras. Based on the
two-dimensional coordinates of the pupils on the eye cameras and the two-dimensional
tracker position on the field camera, the Look! software computes the parameters which are
necessary to compute the field camera position with the pupil positions on the eye cameras.

The more these gaze position samples are distributed on the field camera that the
software has from the calibration procedure, the more accurate are the resulting gaze
estimations after the calibration. To give the patient an assessment of the calibrated field
of view coverage, the software displays the field camera video during the calibration and
darkens the areas of the field video without gaze positioning samples. An example of this
calibration video stream is provided in Figure 12.

2.4. Streaming Server and Architecture

During the telepsychotherapy session, the therapist initiates a video call with the
patient and starts the streaming of the patient’s sensor data. For the video call itself, we use
the Vidyo Connect [8] video conference software, whose server is hosted by the medical
data center for privacy reasons. To stream the sensor data in real time, we developed the
architecture depicted in Figure 13 as described below.

Streaming
Server

Identity
Server

Therapist PortalAggregator Device

Patient Portal

Sensors

Monitoring
Data
Authentication

OR OR

Figure 13. Streaming Architecture of the SKS.

2.4.1. Overview

The sensors stream their data to the patient’s Aggregator Device as described in
Section 2.3. The Streaming Module of the Aggregator Backend on the Aggregator Device
as depicted in Figure 4 processes these data to a format which is efficient for visualization.
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Then the Aggregator Device utilizes the Streaming Server to stream sensor data in real
time to the therapist’s Therapist Portal. Depending on the network topology between the
Aggregator Device and the Therapist Portal, this happens either directly with a peer-to-
peer (P2P) connection for better real-time capability, or via the Streaming Server. Once
the Therapist Portal receives the sensor data, it visualizes them to be evaluated by the
therapist intuitively.

For more data usage transparency, the Aggregator Frontend displays the sensor
streaming activities to the patient. Since the patient might wear the Aggregator Device
in a backpack, the patient can also watch the sensor streaming activities on the Patient
Portal which is optimized for mobile devices like smartphones. To do this in real time, the
Aggregator Device streams the information, which therapist accesses which sensor data, in
real time to the Patient Portal directly via a P2P connection. This happens like the sensor
data streaming but with a dedicated monitoring channel.

To protect sensor data and monitoring information from not permitted users, patients
and therapists must authenticate to the Identity Server which is hosted by the medical
data center.

2.4.2. Streaming Components

For the connection between the two clients Aggregator Device and Therapist Por-
tal, we utilize WebRTC which utilizes a large stack of real-time protocols described in
Appendix A.5. Hence, we need the following components which were subsumed as the
Streaming Server in Figure 13:

• A Signalling Server to which the clients hold a WebSocket connect to exchange session
descriptions and ICE candidates.

• A STUN Server which the clients use to gather the ICE candidates and to detect NATs.
• A TURN Server via which the clients can relay their traffic around NATs and firewall

restrictions or to hide their IP addresses.

As a Signalling Server, we developed a Node.js [9] application. As a STUN and TURN
Server, we used the open source software Coturn [21]. The detailed Streaming Pipeline is
depicted in Figure 14.

Coturn 
Server

Therapist PortalAggregator DeviceSensors

Signalling
Server

Data
Signalling
STUN

OR OR

Streaming
Server

Figure 14. Detailed streaming pipeline including components of Streaming Server, consisting of the
Signalling and STUN/TURN Server.

2.4.3. Security

To restrict the sensor data streaming of patients only to authorized therapists, the
Signalling Server forwards the connection requests only for authorized therapists. For the
authorization, we utilize the OAuth authorization framework described in Appendix A.6.
To prove authorization, the clients provide their OAuth Access Token when they establish
their WebSocket connection to the Signalling Server. This Access Token is issued by the
Identity Server and contains information about the patient’s or therapist’s username. The
mapping of patients to authorized therapists is held in an internal PostgreSQL database of
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the Signalling Server. These permissions are modified via the Signalling Server’s REST API.
The whole WebSocket connection is protected with TLS 1.3 (see Appendix A.3.3) whereby
the Signalling Server authenticates with a PIK-signed X.509 certificate (see Appendix A.3.2).

As mandatory in WebRTC, the P2P connection is protected with DTLS 1.3 (see
Appendix A.3.4). The mutual authentication of the clients happens with self-generated
X.509 certificates which are exchanged in the session descriptions via the Signalling Server.
To protect also meta data at the Coturn server for STUN or TURN, we configured the server
to force DTLS traffic and to authenticate with a PKI-signex X.509 certificate. Since DTLS 1.3
is not yet supported by Coturn, we force DTLS 1.2 which is specified in RFC 6347 [22].
We further restricted Coturn to use only cipher suites which are considered as secure by
the National Security Agency (NSA) of the United States government in RFC 9151 [23]
and by the Federal Office for Security in Information Technology (BSI) of the German
government [24].

2.4.4. Sensor Data Channels

The communication inside the WebRTC connection is structured with dedicated
channels per sensor as depicted in Figure 15.

Therapist PortalAggregator Device

Eye Tracking Media Stream

ECG Data Channel

Movement Data Channel
WebRTC Connection

Figure 15. Sensor data are carried from the Aggregator Device to the Therapist Portal within Media
Streams and Data Channels of a P2P WebRTC connection.

By exchanging session descriptions via the Signalling Channel, these channels are
configured as follows:

• The eye tracking video is streamed with RTP via UDP with a Media Stream. The
Therapist Portal directly displays this video.

• The ECG evaluations are streamed JSON-encoded via SCTP with a Data Channel. The
Data Channel has a maximum packet lifetime of 1 second and does not care about
ordered communication since the ECG values are timestamped so that the correct
order can be reconstructed. The Therapist Portal visualizes the HR and HRV values
as diagrams.

• The movement values are streamed JSON-encoded via SCTP with a Data Channel.
The Data Channel has a maximum packet lifetime of 1 second and does not care
about ordered communication since the movement values are timestamped so that
the correct order can be reconstructed. The Therapist Portal does not visualize these
values yet since this would not be helpful for the therapists but we expect that the
machine learning evaluations will help us to detect and display anomalies to the
therapist in future.

2.4.5. Therapist Portal

When the Therapist Portal receives sensor data, it visualizes them as in the screenshot
of Figure 16.
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Figure 16. Therapist Portal with sensor data streaming in action. Green labels are displayed to
therapist, rectangular red labels are inserted to mark concepts described in the text.

In the background, it renders the eye tracking video stream. This helps the therapists
to see what the patient sees and where the patient looks at. On the top right, the Therapist
Portal plots the actual and the mean heart rate to a live line chart. Below, it does the
same thing with the HRV. The pie chart on the bottom right shows the proportions of the
high (HF), low (Low) and very low (VLF) frequencies in the heart rate. The therapists use
these charts to see the stress level of the patient. Therefore, the therapists start a baseline
measurement with the buttons below the charts. This is done at the beginning of every
therapy session. If the HRV decreases, which also results in a higher VLF proportion, the
patient is more stressed than in the baseline measurement. If the HRV increases, the patient
is more relaxed. The buttons and the text field on the bottom allow the therapist to label the
current actions. These labels are important for the offline analysis of stress levels during
the exposure exercises.

The application itself is a web application which we developed with the Angular [12]
Framework. We host its HTML, CSS and JavaScript file as static files with an Nginx [25]
HTTP server via HTTP/2 (see Appendix A.4).

2.5. Recording Architecture

As described in Section 2.3, the sensors store their data on the Aggregator Device’s
internal storage. This section describes their further way via the Storage Server to the
Data Portal.

2.5.1. Overview

Therapists and researchers use the Data Portal to download the recorded data from
the Storage Server to recap therapy sessions and for future research like the ML-based
evaluation of the movement data. Before patients can upload sensor data and therapists
can access them, they must authenticate to the Identity Server. Figure 17 depicts this entire
Recording Architecture.
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Identity
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Aggregator DeviceSensors
Storage
Server Data Portal

Figure 17. Recording Architecture of the SKS.

2.5.2. Storage Server

The Storage Server is a WebDAV server with a large storage capacity. We use the
open source Nextcloud application [26] for that. The Aggregator Device uploads its data
with the HTTP-based WebDAV protocol (see Appendix A.4) to the server. Therefore, we
utilize the Nextcloud Sync Client which watches a local directory on the Aggregator Device,
uploads new files to the Nextcloud Server, and removes uploaded files from the internal
storage to save storage capacity on the Aggregator Device. To provide therapists access to
the uploaded sensor data files, the patient shares them with the integrated folder sharing
feature of Nextcloud. The therapists can then browse these files by using Nextcloud’s
Web-based user interface whose screenshot is provided in Figure 18. We call this user
interface the Data Portal.

Figure 18. Data Portal: the Nextcloud web interface with sensor-specific folders of a patient.

The Storage Server is equipped with ten 10 TB disks in two RAID-6 bonds. So it
has about two times 30 TB of usable storage whereby up to two disks per bond may
fail without losing data and without impact on availability. For GDPR compliance and
regulatory reasons, the server hardware is located in an ISO-27001 certified data center and
the Nextcloud Enterprise software is managed by an ISO-27001 certified service provider.

2.5.3. Security

The data transfers to and from the Storage Server are protected with TLS 1.3 (see
Appendix A.3.3). The Storage Server thereby authenticates with a PKI-signed X.509 certifi-
cate (see Appendix A.3.2). Patients and therapists log in to the Storage Server via OpenID
Connect (see Appendix A.6.4). Therefore, the users sign in to their account on the Identity
Server. The Identity Server issues an ID Token which is used to authenticate Nextcloud’s
internal OAuth Authorization Server. This Authorization Server issues an OAuth Access
Token which the Nextcloud Sync Client on the Aggregator Device and the Data Portal use
to up- or download the sensor data files.
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To protect the stored data on the Nextcloud server from unauthorized access, we run
it on a hardened Linux-based operating system. SSH access is only possible via key-based
authentication from a restricted IP address space of the university. Nextcloud is configured
to provide access to its stored data only to authenticated users. To further restrict access to
a patient’s data only to the patient’s therapist, we use Nextcloud’s built-in access control
mechanisms via its share feature. To authorize a therapist to access its patient’s data, the
patient must explicitly share its data folder with the therapist.

2.6. Questionnaire Architecture

The therapists regularly ask questionnaires with their patients to evaluate the psy-
chotherapy progress. Patients should thereby fill out the questionnaires in a timely manner
since they contain questions about their feelings over the current day. To motivate the
patients to do this properly, they get rewarded for proper submissions with gamification
elements in the Patient Portal. This is an effective tool to increase the response rate [27].

2.6.1. Overview

A typical workflow of the questionnaire feature looks like this:

1. Therapists create questionnaires in the Therapist Portal.
2. The Therapist Portal uploads these questionnaires to the IMeRa Server which stores

structured study data of the medical center.
3. Patients answer questionnaires in the Patient Portal.
4. The Patient Portal therefore downloads the questions from the IMeRa Server and

uploads the answers.
5. Therapists evaluate answers in the Therapist Portal.
6. The Therapist Portal therefore downloads the answers from the IMeRa Server

The communication of this workflow is depicted in Figure 19.

Patient Portal Therapist PortalIMeRa Server

Figure 19. Architecture of the questionnaire feature.

2.6.2. IMeRa Server

The Integrated Mobile Health Research Server (IMeRa) [28] stores the questions and
answers of the therapist’s questionnaires. Therefore, the Patient and Therapist Portal
communicate via a REST API with the Server which is written in Java with the Spring
framework [29] and stores the data in a Microsoft SQL database. The university medical
centre’s IT department hosts this server in their data center. To protect the data, the server
uses TLS 1.3 (see Appendix A.3.3) and authenticates with a PKI-signed X.509 certificate
(see Appendix A.3.2).

2.6.3. Patient Portal

The Patient Portal is the web application for patients to fill out questionnaires and
to report their well-being. It also implements the UI for the gamification feature which
is described further in Section 2.6.4. Since the portal will be used by children, the user
interface and illustrations were designed specifically for children for a better end user
oriented user experience.

The web application is developed with the Angular framework and is hosted via
HTTP/2 (see Appendix A.4) with an Nginx server. It accesses the gamification progress
and handles in-game purchases via the Gamification Server’s REST API. It also downloads
questionnaires and uploads answers and well-being feedback from and to the IMeRa
REST API.
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2.6.4. Gamification

It is often very stressful for patients to answer daily and weekly questionnaires about
their emotional state and symptom severity. For this reason, we developed gamification
features to serve as an incentive for the children to complete the questionnaires. The core
idea is that patients can design their own avatar in the Patient Portal and receive coins
for each questionnaire they answered. These coins can then be used to design the avatar
(clothes, accessories) and for traveling around the game. The more questionnaires the
patient answers, the more areas of the game (continents) are unlocked for the patient.
Figure 20 shows an example of the graphic style in a screenshot.

Figure 20. Patient Portal: screenshot of avatar with its clothes and accessories in South America.

To persist the game state of each patient across devices, we developed a Gamification
Server. This Gamification Server stores the current progress of the level, bought items, and
the money balance in a PostgreSQL database. It also provides a REST API to access the
state, buy items, and to manage the patient profiles. It is implemented with Node.js and
the Nest.js framework.

2.7. Administration and Security

This section describes the overall administration and security architecture. It describes
the Identity Server, introduces the Administrator Portal, and explains how the infrastructure
is maintained in a containerized environment (see Appendix A.7.2).

2.7.1. Identity Server

The Identity Server is an OAuth Authorization Server and an OIDC OpenID Provider
at once (see Appendix A.6). As implementation, we use the open source software Key-
cloak [30] with a Microsoft SQL Database as user storage. Keycloak provides a web-based
user interface for administrators to

• Configure specific scopes for the Signalling Server, IMeRa Server, and Gamification
Server, which act as OAuth Resource Servers,

• Register the Therapist Portal, Patient Portal, Aggregator Software, and the Adminis-
trator Portal as OAuth Clients, and

• Manage the patient’s and therapist’s user accounts.

To improve the security, users authenticate with their usernames and a password-less
TPM authentication using W3C’s WebAuthN standard [31]. This is a secure and user-
friendly authentication method which is safe against phishing attacks where attackers try
to phish the user’s credentials via faked authentication pages. Therefore, e.g., the patient’s
Aggregator Device is pre-registered for the patient’s user account. When the patient wants
to log in to the Aggregator Software, he can use his Windows PIN or face instead of entering
his password.

Since the Authorization Server (AS) is the root of trust of all the Resource Servers when
it comes to access control, the AS is the most critical infrastructure component. Therefore,
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the AS is hosted in the university medical center’s data center by the IT department and
also authenticates with a PKI-signed X.509 certificate (see Appendix A.3.2).

2.7.2. Administration Portal

The following list provides a summary of what the administrator must set up to add a
user to the study, and to delete when the user leaves the study:

• The user account on the Authorization Server.
• The user’s profile on the Gamification Server.
• The user’s profile on the IMeRa platform.
• The user’s streaming permissions on the Signalling Server.

Since it is not user-friendly to manage this via REST APIs or via different UIs, we
developed the Administration Portal. This is an Angular web application which utilizes the
REST APIs of all the related servers to provide a single and clear management interface and
is hosted via HTTP/2 (see Appendix A.4) with an Nginx server. A screenshot is provided
in Figure 21.

Figure 21. Screenshot of the Administration Portal.

2.7.3. Server Administration

Table 2 provides an overview of all involved servers and the services running on them.
The IMeRa and Keycloak server are both hosted by the IT department of the university
medical center for legal reasons. The Nextcloud server is hosted by an external service
provider for legal reasons, too. The remaining server hosts many different services.

Table 2. Overview of servers, their location, and their provided services.

Server Location Services

IMeRa Medical Datacenter Tübingen IMeRa Server and DB

Keycloak Medical Datacenter Tübingen Keycloak Server and DB

Nextcloud Datacenter Frankfurt Nextcloud Server and DB, coturn

Services University Datacenter Tübingen Traefik, Coturn, Signalling, Gamification Server, and Admin, Therapist, and
Patient Portal’s Nginx

To simplify the management of these services, each service is containerized in a
separate Docker [32] container. This improves the security of the environment due to the
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service isolation and also improves the maintainability. To deploy them all at once, the
entire composition is orchestrated with Docker Compose [33] where environment-specific
variables are configured in a simple .env file as environment variables. This also allows us
to start and stop individual containers or all at once with a single command. A bash script
installs the required components and pulls the git repository from an external git server.
The image-based container deployment, its configuration file based orchestration, and the
automated script-based deployment implements the Infrastructure-as-Code principle. This
lets us (re-)deploy the entire infrastructure fully automated on any other server.

2.7.4. Reverse Proxy

The Signalling and Gamification Server both provide an HTTP-based REST interface
(see Appendix A.4). Additionally, the Admin, Therapist, and Patient Portal are accessed via
HTTP. To make them secure, TLS (see Appendix A.3.3) is used, and several HTTP security
headers are set. It is an elaborate process to configure this for each HTTP service and also
increases the number of attack surfaces from the Internet. A centralized Reverse Proxy
which serves as a single entrypoint from the Internet, as depicted in the infrastructure
graph in Figure 22, is a best common practice to solve this. Due to its good integration
to Docker Compose, this is implemented with the Traefik Proxy [34]. Traefik thereby acts
like an application-layer gateway which forwards HTTP requests from the Internet to the
internal Docker Compose network. It thereby handles HTTPS traffic from the Internet
automatically and manages the X.509 certificates, issued by Let’s Encrypt, and proxies the
HTTPS requests via internal HTTP connections. It also adds HTTP security headers and
redirects HTTP to HTTPS requests to enforce a TLS 1.3-protected communication. This is
also configured in the Docker Compose orchestration file.

Figure 22. Reverse Proxy with proxied services.

2.7.5. Client Administration

In addition to the Backend Services, also the patient’s Aggregator Device must be
administrated. This includes the installation of the Aggregator Software, the APDM
Connector software, the Look! Eye Tracking software, the Nextcloud Sync Client, and
regular updates. A PowerShell script which installs the required programs and updates,
and also configures most of the Windows system, solves this automatically. Afterwards,
only a few configurations must be set manually, such as the BitLocker drive encryption, the
user account creation, and the Nextcloud Sync Client configuration.

3. Evaluations

In this section, we evaluate the storage requirements by sensors, provide a performance
evaluation of the Aggregator Device to estimate the minimum hardware requirements,
and a network utilization evaluation to estimate the minimum network requirements. We
did the performance evaluation with the infrastructure deployment that we use for the
SSTeP-KiZ study whose components are described in Section 2.7.3. Since this evaluation
targets the performance of the technical infrastructure, no patient data are involved. The
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measurements were carried out under laboratory conditions by the authors but the feedback
of our therapists showed that they are comparable with real-world scenarios from the study.

3.1. Storage Requirements

To estimate the storage requirements over time of each sensor, we took the recorded
file sizes and normalized them to Megabyte per hour (MBph). The results are shown in
Table 3.

Table 3. Storage requirements over time per sensor.

Sensor Requirements Percentage

Eye Tracking (video) 2637.5 MBph 97.3%
Eye Tracking (gaze estimation) 24.0 MBph 0.8%
APDM Movement 29.4 MBph 1.1%
Movesense Movement 1.5 MBph 0.5%
Movesense ECG 17.7 MBph 0.6%

Total 2710.1 MBph 100%

According to the percentages, one can clearly see that the video recording of the eye
tracking consumes by far most of the storage (97.3%). We repeated this evaluation and
found out that all these values were the same, except the storage requirements of the video
recording. The reason for that is that the file size of the video recording depends on the
video content and the MPEG-4 codec’s ability to compress the video.

3.2. Aggregator System Performance

To estimate the minimum system requirements of the Aggregator Software, we mea-
sured several performance indicators with Windows 11’s built-in Performance Monitor at
a sampling rate of 12 samples per minute while recording the files from Section 3.1. The
measurement results are compiled in Figure 23 and discussed in the following.

3.2.1. Memory Utilization

Figure 23a shows the memory utilization of the Aggregator Device during the record-
ing and streaming session. The 64-bit Windows 11 system already utilizes about 4.0 GB of
memory from the beginning. Another 1.6 GB are required after startup of the Aggrega-
tor Software which results in the first peak of 5.6 GB. The average memory utilization is
5.3 GB which is utilized constantly over the runtime of the Aggregator Software. Hence,
we recommend a Windows 11 ×64 operating system with at least 6.0 GB of memory as
Aggregator Device.

3.2.2. CPU Utilization

Figure 23b shows the CPU utilization of the Aggregator Device during the recording
and streaming session. It shows that the Intel Core i7-1065G7’s base clock rate of 1.3 GHz
(100%) is overclocked with Intel’s Turbo Boost technology during the entire therapy session.
Starting with a peak of 3.1 GHz (239.7%) for a fast startup, the processor holds an average
clock rate of 2.3 GHz (175%) over its 4 cores with 2 threads each. Hence we recommend
running the Aggregator Software on a device with a CPU of at least 2.4 GHz and 8 threads.

Right after connecting the eye tracker, the device’s active cooling fan becomes no-
ticeable. The evaluation results in Table 4 show that the Look! Eye Tracking software
takes 56.83% of the total CPU power while the Aggregator Backend and the Aggregator
Frontend consume together only 39.37%. Since we realized in previous measurements that
the Nextcloud Sync Client consumed approximately 10% of the CPU time for detecting file
changes in the subscribed directory, we turned it off during the recording. The majority
of the other background tasks come from the Performance Monitor which recorded the
measurement, so this is negligible. Additionally, the Windows Defender consumes 1.02%
but for security reasons we keep it on.
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Figure 23. Performance evaluation of the Aggregator Device. (a) Memory utilization. (b) CPU
utilization. (c) I/O disk utilization. (d) Network utilization.
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Table 4. Average CPU utilization of the Aggregator Device by process.

Application CPU Utilization

Look Eye Tracking 56.83%
Aggregator Frontend 9.39%
Aggregator Backend 29.98%
Others 2.11%
Windows Defender 1.02%
Windows System 0.67%

3.2.3. Energy Consumption

The recording and streaming started with a full battery of 43.0 Wh, which indicates
that the one year old battery has 92% of its factory-new 46.5 Wh capacity remaining. After
the 1:33:30 h recording and streaming, the battery was at 2.7 Wh (6%). This means that the
Surface Pro 7 with an Intel Core i7 processor consumes (43.0−2.7) Wh

1.558 h = 25.9 W to run the
Aggregator Software with all sensors in recording and streaming state. Compared to the
Surface Pro 7’s promised 10.5 hours of battery life, 1.558 h are not enough, but sufficient for
a typically one hour telepsychotherapy session.

3.2.4. I/O Disk Utilization

Figure 23c visualizes the read and write speed of the Aggregator Device’s internal
SSD. Except for a few read operations when starting the applications and probably some
background tasks, the software does not read any data from the disk. In contrast, the write
speed is constantly at 0.8 MBps, which is mainly due to the video recording.

3.3. Bandwidth Consumption

The evaluation of bandwidth consumption is twofold. On the one hand, we measure
the consumed bandwidth without any traffic shaping to estimate the recommended band-
width requirements. On the other hand, we limit the available bandwidth to estimate the
minimum bandwidth required for sufficiently high video quality.

3.3.1. Bandwidth Consumption without Limitations

To estimate the recommended bandwidth requirements, we measured the bandwidth
consumption during the recording and streaming in the previous sections. Thereby, we
did not apply any traffic shaping. Figure 23d shows the utilization of the Wi-Fi network
interface of the Aggregator Device. It shows that the downstream rate is negligible and
probably comes from the WebSocket connection and background tasks. The mean upstream
bitrate is 2.2 Megabits per second (Mbps). Since a short peak of 3.4 Mbps happens only at
the beginning and a value of 2.5 Mbps was reached only six times, we declare this as the
recommended available upload bandwidth on the patient side, and as the recommended
download bandwidth on the therapist side.

3.3.2. Bandwidth Consumption with Limitations

To estimate the minimum required bandwidth, we used the Software NetLimiter 5 [35]
to limit the upload bandwidth step-wise from 2000 via 1000, 500, 250, 125, and 64 kilobits
per seconds (kbps). Since the download bandwidth of the streaming is negligible, we
did not limit the download bandwidth. During the step-wise restriction of the upload
bandwidth, we observed the data stream in the Therapist Portal. We also recorded the
network utilization with Windows’ built-in Performance Monitor at 12 samples per minute
to verify the effectiveness of the upload limit. In addition, we measured WebRTC’s built-in
video streaming statistics to collect quantitative values about the received video’s quality.
The result is depicted in Figure 24.
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Figure 24. Frame rate in frames per second (fps) over time depending on a variable upstream band-
width.

While the video resolution did not change with the bandwidth reduction, every time
the bandwidth was reduced, the frame rate dropped before WebRTC adapted to the new
available bandwidth and recovered the connection. While a limitation from unlimited
down to 500 kbps just led to short instabilities of the frame rate, a further reduction to
250 kbps reduced the frame rate from 30 fps to about 15 fps which is still tolerable. The
next reduction step to 125 kbps reduced the frame rate even further to about 5 fps which is
noticeably lagging. At 64 kbps, the frame rate went below 1 fps which is unusable. After
stopping the traffic shaping, WebRTC started to exponentially increase its quality and the
related bandwidth. From our observations, we recommend a minimum upload bandwidth
of 500 kbps.

4. Summary

In this section, we describe how medical professionals use the system by an example of
a typical telepsychotherapy session and what measures we took to ensure that the software
can be legally used with real patients.

4.1. Application

The system was primarily developed for psychotherapists to treat children with
compulsive disorders and it is currently used for research purposes to improve future
treatments. This section describes the workflow of such a telepsychotherapy session and
the questionnaires from a summarized technical and medical perspective.

Before a regular telepsychotherapy session starts, the patient charges the tablet’s
battery to ensure that the battery lifetime is enough for a typical one-hour telepsychotherapy
session. The therapist and the patient start the session by entering the Vidyo Connect
video conference room. The patient then puts the eye tracker on his/her face, the APDM
movement sensors on his/her wrists, and the Movesense ECG on his/her breast, connects
the sensors to the Aggregator Device via the various interfaces as depicted on the left of
Figure 25 (USB for the eye tracker, BLE for the ECG, and proprietary 2.4 GHz wireless via
the APDM Access Point and USB to the Aggregator Device). When the patient starts the
Aggregator Software, its Backend connects to the Signalling Server with a bidirectional
WebSocket connection as depicted in Figure 25 with the purple double arrow. Then the
therapist opens the Therapist Portal which also establishes a WebSocket connection to the
Signalling Server so that the therapist can call the patient. The Signalling Server forwards
the call request to the Aggregator Software which then starts the WebRTC P2P call with
the Therapist Portal. The Aggregator Software therefore utilizes the STUN server and may
tunnel the P2P connection via the TURN server which is depicted in Figure 25 with the
black arrows. Via this encrypted connection, the therapist receives the sensor data which
are visualized in its Therapist Portal.
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Figure 25. Overview of communication technologies among components in the SKS.

The transmission of the eye tracking data in real time allows the therapist to capture
what the patient sees from the first-person perspective with the gaze direction highlighted.
The therapist uses this information to check whether the patient is actively facing his/her
fears or avoiding them, for example by looking at the floor instead of the triggering stimulus
and not actively perceiving the object with his/her eyes. By evaluating the heart rate (HR),
the therapist sees a trend in how anxious the patient is compared to the baseline at rest.
An increased heart rate often correlates with a more regular heart beat which results in
a decreased heart rate variability (HRV) and is associated with an increasing stress level
when the patient has to face his/her fears during the exercises in the therapy session. This
allows the therapist to assess how the patient is adapting to the stress level that the therapist
is increasing through the chosen exercises.

The therapist can also identify when the stress level becomes too high so that the
exercises need to be modified or discontinued. This assessment is difficult even when the
patient and therapist are in the same room, and nearly impossible when the therapist can
only observe the patient via webcam. With the added sensors, the ability to assess the
patient’s tension improves. However, therapists need to be trained to interpret the data
correctly. During the session, the therapist sets various tags to transmit the timestamps
of the ongoing exposures to the IMeRa server. This allows precise interpretation of the
data depending on the session content when researchers evaluate the therapy session
afterwards.

After the telepsychotherapy session, the Nextcloud Sync client uploads the recorded
medical data from the session to the Storage Server via WebDAV so that therapists and
researchers can access and combine them with the tags from the IMeRa server. These labels
and ECG data help researchers and therapists better understand how constraints affect
tension levels. We are also using the recorded motion data to combine them with the ECG
data to derive an indication of the patient’s stress level [17]. Once this is reliable, we will
also incorporate it into real-time streaming.

The therapist also creates questionnaires and uploads them to the IMeRa server where
patients access and answer them via HTTP on the patient portal. The patients then upload
the answers to the IMeRa server where the therapist can download them from for an
overview of the therapy progress. To motivate patients to answer these questionnaires, a
reinforcement game was implemented into the app. In this game, patients earn coins with
each completed questionnaire. With the earned coins, patients can buy clothes for their
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own avatar and unlock new levels. The patient portal saves this game progress via HTTP
on the Gamification Server.

4.2. Legal Aspects

As the SKS is used in an ongoing telepsychotherapy study with real patients, it must
comply with many legal requirements.

The SKS must be compliant with the general data protection regulation (GDPR) of
the European Union. Therefore, we pseudonymized all sensor data since they are personal
medical data and must be protected. The SKS also passed a check of the data protection
department of the university medical center before it was allowed to be used for patients.

The SKS also passed an IT security check by the university medical center’s depart-
ment. This resulted in the requirement that ISO-27001 certified data centers and service
providers are needed to host the Storage Server. We also had to configure the WebAuthN
authentication to protect the user accounts while keeping the login process user-friendly.

The SKS passed an ethical check which effected some changes. Originally, a leader
board for the gamification feature was planned so that patients could compare their scores
from the questionnaires to those of other patients. However, from an ethical perspective it is
not recommended to make the curing of children with compulsive disorders to a challenge
and put them under additional pressure. So we discarded that idea to pass the check of the
ethics commission.

From a physical perspective, we had to keep track on the safety of the patients. Since
we 3D-printed our eye trackers and use custom camera systems for them, we had to make
sure that especially the infrared LEDs do not harm the patient’s eyes with their radiation.
Therefore, we had to use modelling clay to prevent that the LEDs get too close to the
patient’s eyes.

5. Conclusions

The aim of this software project was to develop the architecture of the SSTeP-KiZ
System (SKS), an Internet of Medical Things (IoMT) system for telepsychotherapy. The
system supports therapists during the behavioral exposure sessions with sensor information
from the patient in real time. For this purpose, eye tracking, ECG, and movement data
were used. The eye tracking provides insights into the patient’s gaze direction during the
session which gives the therapist better knowledge about the patient’s real behaviour than
a normal video call can do. The ECG, namely the derived HRV data, provides insights into
the patient’s stress level which lets the therapist quantify the strength of the compulsive
exposure. The movement measurement provides insights into the patient’s physical activity
which improves the accuracy of the stress level values and lets the therapist quantify the
strength of the patient’s compulsive actions.

For that purpose, we designed the SKS as a modular system which is capable of
connecting wearable sensors via Bluetooth Low Energy, USB, and via a network connection
to the Aggregator Device. To stream the sensor data securely from that Aggregator Device
to the Therapist Portal, we utilized the open and modern web standard WebRTC. We forced
the use of high security standards, and demonstrated that the transmission should also
work well even from homes with slow Internet connections. Nevertheless, we encountered
disconnects when the WiFi connection breaks or is unstable. This often resulted in complete
disconnects so we had to restart the Aggregator Device which interrupted the therapy
session flow.

In addition, SKS is capable of recording the gathered sensor data in full quality and
upload them to a centralized server using the open web standard WebDAV. From there,
the data can be accessed by HTTP-based web interfaces. For a better progress indication,
we also implemented a questionnaire feature. Gamification elements were added to moti-
vate patients to fill out the questionnaires. The SKS leverages the modern authorization
framework OAuth 2 to provide centralized role-based access control mechanisms and
Single Sign-On (SSO) capabilities. To facilitate setup and maintenance, SKS is deployed
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in a containerized environment. Since the SKS is utilized in practice for the treatment
of patients, it has to comply with various requirements with regard to IT security, data
protection, and ethics which are all acknowledged by the responsible department.

In the ongoing feasibility study, we are verifying whether the system delivers the
expected treatment improvements. We also collect the sensor data to be able to verify
the concept of the stress level measurement and to improve the reliability of the stress
level estimation. In future studies, the aim is to increase the self-empowerment in real-life
interventions and exercises let patients do their therapy exercises more independently with
therapeutic feedback in separate feedback sessions. There are also plans to use the system
for adults, but this will require an adaptation of the user interfaces currently designed for
children. In general, the effectiveness of such a self-empowered therapy strategy should
be investigated and improved further since it has the potential to improve the overall
treatment of psychological diseases with less therapeutic effort.

We made the source code for the Aggregator Software, the Backends, and the Frontends
of SKS publicly available on GitHub [36] as well as the custom Movesense ECG device
firmware [37].
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ECG Electrocardiogram
GAP Generic Access Profile
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HDF Hierarchical Data Format
HR Heart Rate
HRV Heart Rate Variability
HTTP HyperText Transfer Protocol
HTTPS HyperText Transfer Protocol Secure
JSON JavaScript Object Notation
ICE Interactive Connection Establishment
IP Internet Protocol
mTLS Mutual Transport Layer Security
NAT Network Address Translation
OCD Obsessive-Compulsive Disorder
OS Operating System
P2P Peer-to-Peer
PKI Public Key Infrastructure
PR Protected Resource
REST REpresentational State Transfer
RO Resource Owner
RS Resource Server
RTP Real-Time Transport Protocol
SCTP Stream Control Transmission Protocol
SDP Session Description Protocol
SIG Special Interest Group
SSO Single Sign-On
STUN Session Traversal Utility for NAT
TCP Transmission Control Protocol
TLS Transport Layer Security
TSV Tab-Separated Values
TURN Traversal Using Relays around NAT
UDP User Datagram Protocol
UI User Interface
USB Universal Serial Bus
UUID Universally Unique IDentifier.
VM Virtual Machine
WebDAV Web-based Distributed and Versioning
WebRTC Web Real-Time Communication
WWW World Wide Web

Appendix A. Technologies

This chapter describes the utilized technologies. It starts with a basic introduction
to heart rate measurement, followed by the physical layer protocol Bluetooth Low En-
ergy (BLE). Then it introduces the Internet’s transport layer protocols and their secure
equivalents, followed by the application layer World Wide Web (WWW) protocols HTTP,
WebRTC, and related technologies. The chapter ends with an introduction to the OAuth
authorization framework and to modern service administration.

Appendix A.1. Bluetooth Low Energy (BLE)

Bluetooth is a physical layer protocol for short-range wireless communication specified
in IEEE 802.15 [38]. Bluetooth Low Energy (BLE) is a special profile of Bluetooth which
was introduced in Bluetooth 4.0 with focus on low power transmissions at a low data
rate of 1 megabit per second (Mbps). Therefore, BLE utilizes the Generic Access Protocol
(GAP) [39] which defines a basic set of methods to access and control data. The Generic
ATTribute profile (GATT) builds up on GAP and defines a lightweight data exchange
framework. This includes GATT services which offer application-specific access to data.
Many of such services are standardized by the Bluetooth Special Interest Group (SIG), such
as the Heart Rate Service [40] which offers access to the RR-intervals that an HR sensor
measures. The encoding format of such data is defined with GATT characteristics, such as
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the Heart Rate Measurement characteristic which encodes the RR interval in milliseconds.
To reduce the transmission-related power consumption by reducing the transmitted signals,
the RR interval is encoded either as an unsigned 8- or 16-bit integer, depending on its actual
value. In addition to the standardized GATT services and characteristics, new services and
characteristics can be defined by developers.

Appendix A.2. Transport Layer Protocols

Data packets are transferred over the Internet between network devices, so-called
hosts. Internet packets are addressed with a source and destination Internet Protocol (IP)
address. To address specific applications on these hosts, source and destinations ports are
used. Such packets may get lost in transfer. To handle lost packets, different transport layer
protocols exist which are described in the following subsections.

Appendix A.2.1. User Datagram Protocol (UDP)

The payloads of IP packets are called datagrams. They are simply transferred with
the User Datagram Protocol (UDP) as specified in RFC 768 [41]. In UDP, hosts send UDP
datagrams without acknowledgement whether they reached their destination. This makes
UDP a fast but unreliable protocol for low-latency and fault-tolerant applications like
media streaming.

Appendix A.2.2. Transmission Control Protocol (TCP)

The Transmission Control Protocol (TCP) is another transport layer protocol as spec-
ified in RFC 793 [42] and updated by RFC 1122 [43], RFC 3168 [44], RFC 6093 [45], and
RFC 6528 [46]. In TCP, hosts exchange acknowledgement messages to ensure complete
and in-order data transmissions. TCP implements congestion control mechanisms which
reduces the sending rate to give priority to other protocols like UDP. This makes TCP a
slower but also a reliable protocol for file transfers or web browsing.

Appendix A.2.3. Stream Control Transmission Protocol (SCTP)

The Stream Control Transmission Protocol (SCTP) is a configurable mix of UDP and
TCP as specified in RFC 9260 [47] which obsoletes its previous versions RFC 2960 [48] and
RFC 4960 [49]. In SCTP, the packet lifetime in milliseconds, the maximum retransmission
count, and the in-order communication are optional while congestion control is not pro-
vided. This makes SCTP a semi-reliable protocol for real-time messages which are only of
interest for a specifiable period of time.

Appendix A.3. Transport Layer Security Protocols

Secure communication on the Internet requires the fulfilment of the following criteria:

• Authenticity: the sender of a message is non-repudiable.
• Confidentiality: only communication partners can read the sent messages.
• Integrity: modifications of messages in transfer are detectable.

The following subsections describe security technologies and protocols to fulfil these
security criteria.

Appendix A.3.1. Digital Signatures

To ensure authenticity, hosts authenticate their messages. They generate a crypto-
graphic asymmetric key pair, consisting of a public and a private key. Then they exchange
their public keys over a trusted channel, mostly in advance. The sending host signs a
message, e.g., by generating the message’s hash (similar to a checksum) and encrypting
this hash with its private key. The host appends the encrypted hash, called signature, to the
message. When the other host receives the signed message, it decrypts the signature with
the sending host’s public key. If the corresponding hash matches the message’s hash, the
message is authenticated successfully.
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Appendix A.3.2. Certificate-Based Authentication

Precisely, digital signatures authenticate hosts as the possessor of a private key, not
as a real-world identity. To link the real-world identity to the key pair, digital certificates
are used. They contain the host’s public key and a real-world identifier like the host’s
domain name. Both of them are signed by a trusted issuer. This issuer is typically a
certificate authority (CA) of a public key infrastructure (PKI). This CA verifies that the host
possesses the related private key and that the host’s real-world identifier is correct. Since
such a manual verification process is time-consuming and certificates should be renewed
frequently, the Automatic Certificate Management Environment (ACME) automates this
process as specified in RFC 8555 [50], . To encode certificates, the X.509 format is used,
as specified in RFC 5280 [51] which obsoletes its previous versions RFC 2459 [52], and
RFC 3280 [53] and is updated by RFC 6818 [54], RFC 8398 [55], and RFC 8399 [56].

Appendix A.3.3. Transport Layer Security (TLS)

Transport Layer Security (TLS), as specified in version 1.3 in RFC 8446 [57], extends
TCP to fulfil authenticity, confidentiality, and integrity. Therefore, two hosts perform a TLS
handshake by verifying each other’s identity with X.509 certificates, exchanging symmetric
encryption keys, and agreeing on a cipher suite which is a set of encryption and signing
algorithms. This establishes a TCP channel which ensures authenticity and integrity of
exchanged data with signatures, and confidentiality with encryption. Such a TLS channel
also provides replay protection, i.e., if an attacker repeats a sent message, the receiver will
detect this.

Mostly, only servers authenticate with signed X.509 certificates to clients since servers
often do not care about the client’s identity. If client and server authenticate mutually, this
is called mutual TLS (mTLS).

Appendix A.3.4. Datagram Transport Layer Security (DTLS)

Due to the unreliability of UDP and SCTP, TLS is not directly applicable to these
transport layer protocols. The Datagram Transport Layer Security (DTLS) protocol is an
adjusted version of TLS whose latest version 1.3 is specified in RFC 9147 [58] and provides
most of the TLS features to UDP and SCTP. Due to missing acknowledgements and tolerated
out-of-order communication, DTLS cannot provide order protection or non-replayability as
TLS does.

Appendix A.4. HTTP Communication

The world wide web (WWW) is based on the HyperText Transfer Protocol (HTTP). It
is a text-based and therefore a human-readable protocol with TCP (see Appendix A.2.2 as
transport layer protocol. The most commonly used version 1.1 is specified in RFC 2616 [59].
The newer version HTTP/2 is specified in RFC 9113 [60] and mainly comes with perfor-
mance improvements. HTTP Secure (HTTPS), as specified in RFC 2818 [61], is an extension
of HTTP which uses the secure TLS transport layer protocol instead of unprotected TCP.

In general, HTTP(S) is a request-response protocol where a client, e.g., a web browser,
sends a request to a server. The server then responds with the requested resources. HTTP
therefore defines multiple methods which form the REpresentational State Transfer (REST)
Application Programming Interface (API). These methods are sufficient for most use
cases. The Web-based Distributed And Versioning (WebDAV) protocol, as specified in
RFC 4918 [62], extends these methods for file management.

For some use cases like bidirectional communication between server and client, the
request-response nature of HTTP is not enough. The WebSocket protocol, as specified in
RFC 6455 [63], extends HTTP by keeping the underlying TCP or TLS connection open,
even after a response from the server. This allows a bidirectional communication between
the server and the web browser, which is often used for real-time communication like the
exchange of instant messages on social media or live ticker updates on news websites.
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Appendix A.5. Real-Time Communication

When two equal hosts, e.g, two clients or two servers, communicate with each other,
they are called “peers” and the connection is called a Peer-to-Peer (P2P) connection. This
section describes the required technologies for real-time communication between two peers.
This includes Network Address Translations (NATs) which may prevent P2P connections,
and the ICE algorithm which provides a standardized workaround for them. It also
introduces how real-time streams are described and how the technologies are combined for
real-time P2P communication in modern web browsers.

Appendix A.5.1. Network Address Translation (NAT)

RFC 2663 [64] describes the Network Address Translation (NAT) as a best practice
technology to separate two networks, e.g., an internal network and the Internet, with
a NAT router. Thereby, the internal network has its private address space which is not
routable from the Internet, while hosts of the internal network can reach external hosts on
the Internet. The NAT router therefore translates the source address of outgoing IP packets
to its own public IP address on the Internet. When the NAT router receives a response
packet, it translates the destination address back to the internal host’s address and forwards
the packet.

So, internal hosts can reach external hosts directly, but internal hosts cannot be reached
from external hosts. This is a good protection mechanism for client devices in home
networks from external attacks.

Appendix A.5.2. Interactive Connection Establishment (ICE)

Whenever two peers want to establish a bidirectional connection, this may fail when
NATs or other firewall restrictions are involved so that the peers cannot reach each other
directly. To establish a P2P connection in spite of NATs, the Interactive Connection Estab-
lishment (ICE) framework is used, as specified in RFC 8445 [65]. It utilizes the following
core components:

• Session Traversal Utility for NAT (STUN), as specified in RFC 8489 [66], which
allows peers to look up their public IP address and to detect NATs.

• Traversal Using Relays around NAT (TURN), as specified in RFC 8656 [67], which
allows peers to tunnel their P2P traffic through a public server.

Both peers use a public STUN server to request their possibly translated source IP
addresses. This works with TCP or UDP, and optionally with TLS or DTLS whereby
the server authenticates with a signed X.509 certificate. If this IP address is none of the
peer’s network interface, a NAT is detected. Every found private and public IP address is
called ICE candidate. Then, both peers exchange their ICE candidates via an out-of-band
Signalling Channel and try to establish a connection to each other’s IP addresses of the
ICE candidates.

If the connection establishment fails, a TURN server is required. This TURN server
opens one port for each peer and tunnels received datagrams from one peer to another
peer. The transmissions between the peers and the TURN server which contain meta
data about the TURN partner are depicted with the red arrow in Figure A1. For the
transmissions, they use TCP or UDP and may be protected with TLS or DTLS whereby the
TURN server authenticates with a signed X.509 certificate. The tunneled traffic between
the two peers is depicted with the blue arrow in Figure A1. The traffic may consist of
TCP or UDP datagrams, and may be protected with TLS or DTLS whereby both peers
authenticate mutually with X.509 certificates. Tunneling via a TURN server is an additional
ICE candidate, so the peers also exchange this candidate via the Signalling Channel. Peers
can force TURN tunneling to hide their original IP address, but this may increase the
latency of the P2P connection.
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Figure A1. Peer 1 and Peer 2 establish a mutual TLS connection peer-to-peer (blue) through two
separate Client-Server TLS connections (red) via the TURN Server.

Appendix A.5.3. Session Description Protocol (SDP)

The Session Description Protocol (SDP) in RFC 8866 [68] standardizes Session Descrip-
tions as a description format for audio, video, or data channels, media encoding formats of
audio or video streams, and peer identity information like X.509 certificates. RFC 8839 [69]
extends this standard by descriptions of ICE candidates. Such Session Descriptions are
often exchanged via Signalling Channels with HTTP or WebSockets.

Appendix A.5.4. Web Real-Time Communication (WebRTC)

To establish a standardized API for real-time P2P communication in web browsers,
the World Wide Web Consortium (W3C) introduced the official WebRTC specification by
Boström et al. [70]. It utilizes the ICE algorithm to establish connections even through NATs
which requires a STUN server and may require a TURN server. WebRTC defines two ways
to communicate between peers:

• Data Channels for text-based and binary data transfer via configurable SCTP (see
Appendix A.2.3) connections.

• Media Streams for real-time audio and video streaming with the Real-time Transport
Protocol (RTP) via UDP, as specified in RFC 3550 [71]. WebRTC automatically handles
the bit-rate adaption to the available bandwidth by adjusting the media quality.

For security reasons, the WebRTC API protects every Data Channel and Media Stream
with DTLS by default. Therefore, both peers must mutually authenticate via unsigned
X.509 certificates which the browser generates automatically for each connection. Then
the peers generate their certificate hashes, called thumbprints. As Session Descriptions,
the peers exchange their ICE candidates (see RFC 8839 [69]), their media encodings and
thumbprints in Session Descriptions over an out-of-band Signalling Channel. In the mutual
DTLS handshake, the peers compare these thumbprints with the received certificates to
verify the remote peer’s identity.

Appendix A.6. OAuth

In this section, we define authentication and authorization, and present the OAuth
authorization framework as specified in RFC 6749 [72], which is an application-layer
authorization protocol based on HTTP.

Appendix A.6.1. Authentication and Authorization

• Authentication is when an entity proves his identity.
• Authorization is when an entity proves permissions to access specific resources.

This can be compared with the check-in at the hotel: the user authenticates at the
check-in counter with its passport and gets a key card which authorizes him to access
his room. The door thereby does not care about the user’s identity, but only about the
authorization of the key card user.

Appendix A.6.2. OAuth Components

The OAuth authorization framework introduces four primary components:

• Resource Owner (RO): the user who owns Protected Resources (PR), e.g., files.
• Client: the application that the RO authorizes to access its PRs.
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• Authorization Server (AS): the server which verifies the identity of a RO and issues a
signed Access Token (AT) to the Client after the RO granted that.

• Resource Server (RS): stores the RO’s PRs and verifies ATs of requesting Clients to be
valid and sufficient to access the PRs.

Appendix A.6.3. Access Token Validation

The AT is typically a JSON Web Token (JWT) as defined in RFC 7519 [73]. When a
Client wants to access PRs from the RS, the RS validates the AT as follows:

1. Verify that the issuer of the AT is a trusted AS.
2. Verify that the AT is signed by the trusted AS.
3. Verify that the RS is the audience, which is stated in the AT.
4. Verify that the scope of the AT is sufficient to access the requested resources.

The AT may also contain additional information about the RO, such as his username
or its associated roles. The RS may validate also this information before it provides access
to the PRs.

Appendix A.6.4. OpenID Connect

OpenID Connect (OIDC) is an extension of OAuth for third party authentication. It is
often used for Single Sign-On features like Sign-In with Apple, Facebook, or Google. Typi-
cally, OpenID Connect is used as an alternative authentication to an OAuth Authorization
Server. Therefore, a user signs in to his, e.g., Google account via the OpenID Provider (OP)
of Google. The OP issues an ID Token to the Client. This ID Token is a JWT which is signed
by Google’s OP and contains Identity Claims about a Resource Owner, e.g., his name or
email address. The Clients sends this ID Token to the OAuth Authorization Server to
authenticate its Resource Owner. After a successful user authentication, the Authorization
Server issues the Access Token to the Client.

Appendix A.7. Service Administration

Many modern tools and approaches to maintain services came up in the last decades.
We describe them in the following.

Appendix A.7.1. Virtualization

Hypervisors are a technology to run an isolated operating system (OS) in a Virtual
Machine (VM) on a physical host’s OS kernel. This allows running multiple different
operating systems like Linux and Windows on one physical machine independently and at
the same time. Thereby, each VM gets its own virtual network interface with its own IP
addresses and runs its own OS kernel. For system administrators, this is an important tool
to isolate services. Otherwise, this would require much more physical resources.

Appendix A.7.2. Containerization

Containers can be viewed as lightweight VMs where a container runtime isolates
applications, instead of operating systems. Therefore, applications run in containers which
all share the OS kernel of the host instead of running their own OS kernel in a virtualized
environment. These architectural differences between containers and virtual machines are
depicted in Figure A2.

To run an application in a container, an imperative text file describes how to install
the environment of the service. Imperative means, that the text file contains command
lines which the container runtime executes to build an image from this file. After that, the
container can be started within milliseconds.

Typically, one container contains one service. To combine multiple services like an
HTTP and a database server, compositions of existing container images can be described
with a descriptive configuration file. Descriptive means that the file describes a preferred
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state of the composition, but not how to achieve this state. The entire deployment can also
start up within milliseconds.

OS Kernel

Hypervisor

VM 2

Guest OS Kernel 2

Application 2

VM 1

Guest OS Kernel 1

Application 1

(a)

OS Kernel

Container Runtime

Container 1

Application 1

Container 2

Application 2

(b)
Figure A2. Comparison of Virtual Machine and Container Architectures. (a) Architecture of Virtual
Machines. (b) Architecture of Containers.
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